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Abstract
In this paper, we show how maximal entanglement between boundary qubits
in the open spin chain of an XX model is realized. This creation of maximal
entanglement could be used for phase covariant quantum cloning in a spin chain.
The maximal entanglement is achieved with specially engineered couplings.
We compare our realization with alternative methods and find that the method
of pre-engineered couplings is straightforward and the decrease of cloning
fidelity due to time errors is smaller.

PACS numbers: 03.67.Bg, 03.67.Hk, 03.67.Lx

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum teleportation [1] and quantum cloning [2] are two significant breakthroughs in
quantum information theory over the last 10 years. In quantum teleportation, one can transfer
an unknown state from one location to another provided that the two locations share an
entangled resource. Quantum cloning however is restricted by the no-cloning theorem. The
no-cloning theorem [3] states that there is no quantum operations that can duplicate an arbitrary
quantum state perfectly. However, it is still possible to have imperfect cloning [4]: in imperfect
cloning, one simply duplicates states of high fidelity. In particular, for a symmetric universal
N copy to M copy quantum cloning machine [5], it can be shown that the optimal fidelity is
FN→M = MN+M+N

M(N+2)
. For a 1 → 2 quantum cloning machine, the optimal fidelity is 5

6 [6–8].
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The optimal fidelity of 5/6 is not sacrosanct: one can achieve far better optimal fidelity
by restricting the qubits to certain states, for instance the states that lie on the equator. For
symmetric phase-covariant cloning [8, 9], a minimum fidelity of F ≈ 0.8536 can be achieved.
Like quantum teleportation, quantum cloning can be realized experimentally in the laboratory
through quantum gates and circuits. Indeed, the optical implementation of the 1 → 2 cloners,
based on parametric downconversion as the amplification phenomenon, was successfully
demonstrated [10, 11].

More recently, increasing attention has been devoted to a spin chain as a fundamental
communication structure [12]. It has been shown that it is possible to transfer an arbitrary
state without a shared resource through a spin chain. Such perfect state transfer (PST) in a
spin chain can be realized through a pre-engineered couplings [13, 14]. The important feature
of this approach is that once the coupling constants are fixed to certain values, the state of the
qubit at one end will be transferred to the other end perfectly at certain time regardless of the
length of the chain.

In this paper, we look at the feasibility of cloning qubits through a spin chain. In short,
we would like to find out whether or not it is possible to share the information equally between
the end (boundary) qubits, starting with an arbitrary state in the first qubit at the beginning of
the process. Our question is essentially a resource-saving quantum cloning in a spin chain,
which was first mentioned by Chen et al [16]. In their paper, they considered 1 → M phase
covariant cloning (PCC) [8, 15, 17] in a spin star network based on the XXZ model and found
that resource-saving PCC can be achieved if M is an even number. For the PCC, the required
unitary evolution is as follows5:

U |00〉 = |00〉, (1)

U |10〉 = 1√
2
(|10〉 + |01〉). (2)

Suppose that the input state for PCC is |ψ〉 = |ϕ1〉|0〉, where |ϕ1〉 = cos θ
2 |0〉 + sin θ

2 eiφ|1〉
is the state to be copied. Then the fidelity for PCC is f (θ) = 〈ϕ1|ρout|ϕ1〉, where
ρout = T r2[U |ψ〉〈ψ |U †] is one of the symmetric output states. The fidelity can be calculated
simply as f (θ) = (5 +

√
2 + 2cos θ − (

√
2 − 1)cos2θ)/8, which is independent of phase φ.

The dependence of fidelity on θ is shown in figure 1, and it can be seen that the fidelity reaches
minimum value (2 +

√
2)/4 ≈ 0.8536 when θ = π/2, i.e. |ϕ1〉 = (|0〉 + eiφ |1〉)/√2 which lies

on the equator of the Bloch sphere. PCC has important applications in quantum cryptography,
for instance, in BB84 protocol [18], where it provides the optimal eavesdropping strategy for
Eve to acquire information of the qubit sent by Alice [19].

We note that this cloning process is essentially the generation of maximal entanglement
between the boundary qubits6. Entanglement generation through spin interactions is also
important for realizing solid-state quantum computation [21–23]. Equation (1) is trivial
and is automatically satisfied in the spin chain of an XX model, since the state |0〉⊗N is an
eigenstate of the Hamiltonian (cf (3) below) and thus will not evolve with time. Equation (2)
is the crucial one, which means that flipping one of the two boundary qubits will generate
maximal entanglement between them. Therefore, realizing PCC amounts to the generation of
entanglement between the two boundary qubits when one of the qubits is flipped. Can this
property be achieved in a linear spin chain? We analyze this question carefully in the following

5 U |01〉 and U |11〉 can be defined similarly, which are omitted. Here, we consider the state-dependent quantum
cloning with partial information that the Bloch vector of the state is in the northern hemisphere, cf [17].
6 The spin chain realizing perfect state transfer can also realize maximal entanglement generation of end qubits with
appropriate initial product states but in that case resource-saving cloning cannot be fulfilled. See [20, 26] for details.
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Figure 1. The fidelity of state-dependent phase covariant quantum cloning as a function of the
input state angle θ . The input state is |ψ〉 = |ϕ1〉|0〉, where |ϕ1〉 = cos θ

2 |0〉 + sin θ
2 eiφ |1〉 is the

state to be copied.

sections. The paper is organized as follows. In section 2, we discuss the XX model with pre-
engineered couplings and give a general formula for the coupling constants. In section 3, we
compare our cloning method with an alternative one based on the clone-and-swap scheme. In
section 4, we give a proof for our general result. In section 5, we give a conclusion to finish
this paper.

2. XX model with pre-engineered couplings

The Hamiltonian of our model is

H =
N−1∑
i=1

Ji

2

[
σx

i σ x
i+1 + σ

y

i σ
y

i+1

]
+

N∑
i=1

Biσ
z
i . (3)

Without loss of generality, we assume that all Ji’s are real and positive7. This model can be
experimentally realized through manipulations of control lasers and detuning in coupled atom-
cavity arrays [24] or through controlling external voltage in linear arrays of tunnel-coupled
quantum dots [25]. Since the operator of the total z component of the spin: σ z

tol = ∑N
i=1 σ z

i

commutes with the Hamiltonian, the state |100 . . . 0〉 must evolve to a superposition of states
with only one up-spin. Therefore, we can work in the one excitation subspace spanned by the
basis vectors |n〉, n = 1, 2, . . . , N , where |n〉 denotes the state with an up-spin at nth qubit
[13]. The Hamiltonian in this subspace has the following matrix form:

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2B1 J1 0 . . . 0
J1 −2B2 J2 . . . 0

0 J2 −2B3 . . .
...

...
...

...
. . . JN−1

0 0 0 JN−1 −2BN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

(
N∑

i=1

Bi

)
IN×N, (4)

7 It can be proved that for any open spin chain, there always exists a local unitary transformation for the bases such
that the phases of Ji’s are absorbed into the bases.
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where IN×N is an N ×N identity matrix. For the entanglement of boundary qubits, we would
like to realize the following time evolution:

U = e−itH |1〉 = eiφ1 |1〉 + eiφ2 |N〉√
2

, (5)

where φ1 and φ2 are some arbitrary phases8. By redefining H ′ = Ht , one can set t to unity.
For constant Ji, it can be verified that equation (5) is satisfied only for N = 2 or 3. The
relevant results are presented as follows: (i) for N = 2, B1 = B2, J1 = π

4 + k
2π , where k is a

non-negative integer; (ii) for N = 3, B1 = B3 = π
2 , B2 = 0, J1 = J2 =

√
6π
4 . It is interesting

to note that in both cases, |〈N |U 2|1〉| = 1, so that at time t = 2, perfect state transfer occurs.
For pre-engineered couplings (i.e. different Ji), we can obtain solutions satisfying

equation (5). In particular for Bi = 0 for all i, an interesting solution for arbitrary length of
spin chain N is9

JN,i = fN,i

√
i(N − i)

2
π, (6)

where

fN,i =

⎧⎪⎪⎨
⎪⎪⎩

√
1 ± (

δi, N−1
2

− δi, N+1
2

)
1√
2
, if N is odd,√(

N − 2i + 1 ± 1
2

)(
N − 2i − 1 ∓ 1

2

)
(N − 2i + 1)(N − 2i − 1)

, if N is even.

(7)

In equation (7), δi,j = 1 if i = j , and 0 otherwise. Note that we have two solutions in
equation (7). The first solution corresponds to the upper signs in ± and ∓ in equation (7),
and the second solution corresponds to the lower signs. It can be seen that the coupling
constants depend on both N and i, which are equal to those of the PST case

(
JN,i =

√
i(N−i)

2 π
)

multiplied by a factor fN,i . This factor has some interesting properties. For the odd N case,
fN, N−1

2

= fN, N+1

2
, and thus JN, N−1

2

= JN, N+1

2
, which means that the central two couplings are

asymmetric with respect to the central qubit. For the even N case, if we consider the coupling
in the middle of the chain, i.e. i = N

2 , we see that fN,i = 1 ± 1
2 = 1

2 , 3
2 . For i = N

2 − m,

with m being an integer enumerated from the middle of the chain, fN,i =
√

(2m+1± 1
2 )(2m−1∓ 1

2 )

(2m+1)(2m−1)
.

These factors asymptotically go to unity as m → ∞. Figure 2 shows the values of the factors
fN,i as functions of m. Thus, for large N, the couplings near the boundary qubits approach the
values for PST.

We illustrate our results with N = 60, 61. Figure 3 shows the magnitude of the couplings
for N = 60 and N = 61. It can be seen that all the four plots contain jumps at the center.
Figures 4 and 5 show the time dependence of the probability amplitudes of certain qubits using
one of the two possible solutions for N = 60 and N = 61, respectively. It can be seen that
at t = 1 in both figures, the amplitudes for boundary qubits are 0.707, meaning that they are
maximally entangled. At t = 2 in N = 60 case, the amplitude of the 60th qubit is 1, which
indicates that PST occurs from the first qubit to the last one. However, there is no PST in
the odd N case. This phenomenon is closely related to the asymmetric couplings required in
the odd case. Indeed, perfect state transfer in a spin chain requires symmetric couplings [26].

8 φ1 and φ2 do not affect the cloning fidelity, since they can be absorbed into the bases through a redefinition, e.g.
|1′〉 = eiφ1 |1〉, etc.
9 The solution is not unique. Nevertheless, our solution deserves special attention as it is closely related to the

solution of PST, e.g. Ji =
√

i(N−i)
2 π . Actually, this closed relation always exists for any solutions of PST in a spin

chain of an odd number of qubits. The proof will be presented in a later publication which is in preparation.

4



J. Phys. A: Math. Theor. 43 (2010) 035302 Li Dai et al

0 5 10 15 20

m
N

2
i

0.6

0.8

1

1.2

1.4

1.6

f N
,i

Figure 2. The factor fN,i as functions of m = N
2 − i. The red and blue lines correspond to two

solutions of fN,i of the even N case.
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Figure 3. Patterns of Ji’s. The upper two figures are the first and second solutions of N = 60
case respectively, and the lower two figures are the first and second solutions of the N = 61 case,
respectively. It can be seen that there is a reflection symmetry of Ji’s in the even N case, while the
symmetry of Ji’s is breaking if N is odd.

In the case of an odd spin chain, for any given couplings that permit PST, the introduction
of asymmetry in the middle two couplings always results in maximal entanglement between the
boundary qubits (also cf footnote 9). This introduction of asymmetric couplings is analogous
to an insertion of a beam splitter10. To see this connection, note that the ratio between the

10 The concept of a beam splitter in a spin chain has already been proposed in [27, 28] for a two-dimensional case.
Here we briefly discuss this concept in a one-dimensional spin chain.
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XX model using the first solution of the N = 60 case. H = ∑59
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is |φ(t)〉 = ∑60
i=1 fi(t)|i〉, and |φ(0)〉 = |1〉. The red, green, black and blue lines are for |fi(t)|

(i = 1, 30, 31, 60), respectively.
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Figure 5. Time-dependence of amplitudes of three certain qubits in a 61-qubit spin chain of the
XX model using the first solution of the N = 61 case. H = ∑60

i=1
Ji
2 (σ x

i σ x
i+1 + σ

y

i σ
y

i+1). The

state is |φ(t)〉 = ∑61
i=1 fi(t)|i〉, and |φ(0)〉 = |1〉. The red, green and blue lines are for |fi(t)|,

(i = 1, 31, 61), respectively.

central two couplings is
√

2 ± 1, as shown in equations (6) and (7). This ratio is independent
of the number of qubits in a spin chain and can be obtained simply by considering a 3-qubit
spin chain with the Hamiltonian given by

H =
⎛
⎝ 0 J1 0

J1 0 J2

0 J2 0

⎞
⎠
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(a)
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Figure 6. Quantum cloning based on (a) swap operations and (b) pre-engineered couplings where
Ji = √

i(N − 1 − i) is for PST in [13].

and demanding that e−iH = U be a Hadamard matrix (beam splitter) in the one-excitation
subspace of the first and third qubit, i.e.11

U ∼

⎛
⎜⎝

1√
2

0 1√
2

0 1 0
1√
2

0 − 1√
2

⎞
⎟⎠ .

Moreover, it can be verified that e−iH |i〉 = eiφ1 |i〉+eiφ2 |N+1−i〉√
2

(
i = 1, 2, . . . , N−1

2

)
. This result

indicates that the central asymmetry can always split a spin excitation wherever this excitation
is (at one side of the central asymmetry), justifying the analogy of the central asymmetry to a
beam splitter.

3. Comparison with an alternative method

An alternative method for quantum cloning of boundary qubits is as follows: first, we perform
the cloning in a 2-qubit spin chain. Second, we transfer the quantum state of the second qubit
in the above spin chain to the spin at the right end. The second step can be realized either
through successive swap operations (figure 6(a), referred to as clone-and-swap scheme) or
through pre-engineered coupling constants for PST (figure 6(b)) after the state has been cloned
using the first two qubits.

Compared with the clone-and-swap scheme, our method is straightforward as one only
needs to prepare the initial state of a spin chain, while in the clone-and-swap scheme, swap
operations must be performed sequentially one after another in order to transfer the state of
qubit 2 to qubit N. Moreover, the errors may accumulate during these successive operations,
which can be seen as follows. These errors usually originate from (i) interactions between
qubits in a spin chain with environment; (ii) imprecise time determination of operations. Error
(i) occurs in all schemes and has been discussed extensively elsewhere [26, 29]. For simplicity
and illustrative purpose, we only consider error (ii). Such errors could result from inherent
time resolution of experimental apparatus or set-up.

Let us analyze the swap operations of the clone-and-swap scheme in some detail. In this
scheme, the couplings need to switch on and off many times. Suppose the ideal waveform
for the switch is a rectangular pulse. In practice, however, this pulse is distorted, as seen in
figure 7. This distortion could render the determination of the operation time imprecise.

11 The actual matrix form of U may differ from the form in the text in some phases before each matrix element as
long as the matrix is unitary and the modulus of each matrix element is the same as the one in the text.
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Figure 7. The ideal and practical waveforms of one of the couplings in the spin chain using the
clone-and-swap scheme for illustrative purpose.
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Figure 8. The cloning fidelity as a function of the parameter σ/t0 for the two schemes with
N = 61. The input state is |0〉+|1〉√

2
.

Assume that the ideal switch-on time is t0, and the practical time is t2 − t1. The swap operation
is performed on the 2-qubit chain with the Hamiltonian H2 = J (t)|+〉〈+|−J (t)|−〉〈−|, where
|+〉 = |0〉+|1〉√

2
and |−〉 = |0〉−|1〉√

2
. The relevant dynamics is

e−i
∫ t2
t1

H2 dt = e−i
∫ t2
t1

J (t) dt |+〉〈+| + ei
∫ t2
t1

J (t)dt |−〉〈−|
= e−iJ0t0(1+δt0)|+〉〈+| + eiJ0t0(1+δt0)|−〉〈−| = e−iH20t0(1+δt0), (8)

where H20 = J0|+〉〈+|−J0|−〉〈−|, J0 is the ideal constant coupling and t0 is the corresponding
time for the swap operation.

From equation (8), it can be seen that an imperfect pulse in the coupling gives rise to an
error δt0 in the required operation time. For simplicity, suppose for both of the two schemes
the time error obeys the Gaussian distribution N(0, σ/t0). Figure 8 shows the fidelity as a
function of errors, i.e. the standard deviation of operating time σ/t0 for the two schemes in
an N = 61 spin chain. For our simulation, we assume that the input state is |0〉+|1〉√

2
. It can be

seen that the fidelity for pre-engineered couplings is better than the clone-and-swap scheme,
especially for larger errors. Figure 9 shows the fidelity as a function of the length of the chain
with a fixed error σ/t0 = 0.1 for the two schemes, again with the input state |0〉+|1〉√

2
. It can
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Figure 10. The cloning fidelity as a function of the the couplings’ error parametrized by σi/Ji = δ0
for the scheme of pre-engineered couplings in an N = 61 spin chain. The input state is |0〉+|1〉√

2
.

be seen that for a long spin chain, pre-engineered couplings again perform better than the
clone-and-swap scheme.

It is important to note that in the scheme of pre-engineered couplings, imprecision in
values for couplings may also result in a decrease in cloning fidelity. This is shown in
figure 10, where we have assumed that Ji obeys the Gaussian distribution N(Ji, σi) and
σi/Ji = δ0, i.e. the same for all i. It can be seen that when σi/Ji = 0.1, i.e. 10% error,
the fidelity decreases to 0.714. This decrease in fidelity is still tolerable, showing that pre-
engineered couplings could be quite robust against the errors even for practical applications.

Figure 6(b) is essentially the same as the scheme for cloning with pre-engineered
couplings. However, the latter scheme still has a slight advantage: instead of performing
two steps to realize cloning, in the latter method we require only one step.
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4. Proof of our general result

In this section, we provide a proof of our general result. As mentioned in section 2,
[
σ z

tol,H
] =

0. So we can work in the subspace spanned by the basis vectors |n〉, n = 1, 2, . . . , N . In this
subspace, for the first solution of the odd N case, construct the following unitary operator:

U0|j 〉 = (−1)
N−1

2
(−1)f |j 〉 + |N + 1 − j 〉√

2
, j 
= N + 1

2
, (9)

U0

∣∣∣∣N + 1

2

〉
= (−1)

N−1
2

∣∣∣∣N + 1

2

〉
, (10)

where f = θ [j − (N + 1)/2] is a step function (f = 0 for j � (N + 1)/2, f = 1 otherwise).
The eigenvalues of U0 are ±1. The number of −1’s is 2

⌊
N+1

4

⌋
, where

⌊
N+1

4

⌋
denotes the

maximum integer less than or equal to (N + 1)/4. The eigenvectors of U0 are

|λj 〉 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1 +

√
2λj (−1)

N−1
2
)|j 〉 + |N + 1 − j 〉√

4 + 2
√

2λj (−1)
N−1

2

if 1 � j � N−1
2 ,

∣∣∣∣N + 1

2

〉
if j = N + 1

2
,

(11)

where λj are the corresponding eigenvalues and j denotes the j th qubit in the spin chain. The
corresponding Hamiltonian to U0 is (setting time t equal to unity)

H0 = i · log[U0] =
2
 N+1

4 �∑
i=1

(2ki + 1)π�−
i +

N−2
 N+1
4 �∑

j=1

2kjπ�+
j , (12)

where ki’s are integers �−
i = |θ−1i〉〈θ−1i |, �+

j = |θ+1j 〉〈θ+1j | and

|θ−1i〉 =
2
 N+1

4 �∑
j=1

R
j

1i |λj = −1〉, (13)

|θ+1j 〉 =
N−2
 N+1

4 �∑
k=1

Rk
2j |λk = +1〉. (14)

The matrices R
j

1i and Rk
2j are unitary transformations in the respective degenerate subspace.

It is interesting to note that R
j

1i is an element of the group SU
(
2
⌊

N+1
4

⌋)
and Rk

2j is an element

of the group SU
(
N − 2

⌊
N+1

4

⌋)
. The matrix form of equation (12) in the basis vectors of

equation (11) is

H0 =
(

R1D1R
†
1 0

0 R2D2R
†
2

)
, (15)

where D1 = Diag[(2k1 + 1)π, (2k2 + 1)π, . . .],D2 = Diag[2k1π, 2k2π, . . .].
The Hamiltonian (3) in the basis vectors of equation (11) has the following matrix form12:

H ′ =
(

Xm+1 Y
Y T Zm

)
, (16)

12 Here we do not present the explicit form of the matrix elements of H ′. But it can be observed that the matrix Y

contains terms: −Ji +JN−i

2
√

2
, for 1 � i � N−3

2 , and
√

2+
√

2
2 [(1 − √

2)Ji + Ji+1], for i = N−1
2 .

10
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where m = N
2 and m is odd. This matrix must be equal to the matrix (15) with some

R1,R1,D1 and D2. Therefore, Y in (16) must be 0. From this, we get

Ji = JN−i ,

(
1 � i � N − 3

2

)
, (17)

Ji = (
√

2 + 1)Ji+1,

(
i = N − 1

2

)
. (18)

Using (17) and (18) to simplify (16), we obtain

H ′ =
(

X ′
m+1 0
0 Z ′

m

)
, (19)

where

X ′
m+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 J1 0 . . . 0
J1 0 J2 . . . 0
0 J2 0 . . . 0
...

...
...

. . .
√

4 − 2
√

2Jm

0 0 0
√

4 − 2
√

2Jm 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(20)

Z ′
m =

⎛
⎜⎜⎜⎜⎜⎝

0 J1 0 . . . 0
J1 0 J2 . . . 0
0 J2 0 . . . 0
...

...
...

. . . Jm−1

0 0 0 Jm−1 0

⎞
⎟⎟⎟⎟⎟⎠ . (21)

For even m, exchange X ′
m+1 and Z ′

m of (19).
In order to get the solution for the couplings, one needs to find R1,R1,D1 and D2

in equation (15), which are not unique. We conjecture that D1 = diag[mπ,−mπ, (m −
2)π,−(m−2)π, . . . , π,−π ],D2 = diag[(m−1)π,−(m−1)π, (m−3)π,−(m−3)π, . . . , 0].
If m is even, replace m with m−1 in D1, and replace m with m+1 in D2. Actually, the diagonal
terms of D1 and D1 are the eigenvalues of the Hamiltonian (3). These eigenvalues are the
same as those of the Hamiltonian for perfect state transfer (Hpst) with Ji =

√
i(N−i)

2 π . This
property, as can be seen later, helps to solve our problem. Rewriting Hpst in the representation
of the eigenvectors of e−iHpst , we get, for N = 2m + 1, if m is odd,

Hpst =
(

Km+1 0
0 Lm

)
, (22)

where

Km+1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 J
pst
1 0 . . . 0

J
pst
1 0 J

pst
2 . . . 0

0 J
pst
2 0 . . . 0

...
...

...
. . .

√
2J

pst
m

0 0 0
√

2J
pst
m 0

⎞
⎟⎟⎟⎟⎟⎟⎠

(23)

11
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Lm =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 J
pst
1 0 . . . 0

J
pst
1 0 J

pst
2 . . . 0

0 J
pst
2 0 . . . 0

...
...

...
. . . J

pst
m−1

0 0 0 J
pst
m−1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (24)

If m is even, exchange Km+1 and Lm in (22). The general solution to U2 = e−iHpst is (Hpst is
only a special solution to U2)

H2 =
(

R′
1D

′
1R

′†
1 0

0 R′
2D

′
2R

′†
2

)
, (25)

where the parameters are similar to those in equation (15). Since we have conjectured that the
eigenvalues of (3) are the same as those of Hpst (i.e. D1 = D′

1 and D2 = D′
2) and the structure

of (22) is the same as that of (19), we conclude that R1 = R′
1 and R2 = R′

2. Therefore, the
matrix (22) is equal to the matrix (19). Thus,

Ji = J
pst
i , (1 � i � m − 1) (26)√

4 − 2
√

2Jm =
√

2J pst
m . (27)

This ends the proof of first solution for odd N.
The second solution for odd N can be obtained similarly. The only difference is that U0

slightly changes and Ji exchanges with Ji+1 for i = (N −1)/2. For the first solution of even N,
U0 in (9) and (10) does not work, which suggests we need to add some relative phase between
antipodal qubits (i.e. qubit 1 and qubit N, qubit 2 and qubit N − 1, etc):

U0|j 〉 = |j 〉 + i(−1)
N
2 |N + 1 − j 〉√
2

. (28)

Using the method in the proof for odd N, the counterpart of (15) is (N = 2k)

H2k =
(

R1PkR†
1 0

0 R2QkR†
2

)
, (29)

where

Pk = diag

[
qmin, . . . ,−9

4
π,−π

4
,

7

4
π, . . . , qmax

]
,

Qk = diag

[
−qmax, . . . ,−7

4
π,

π

4
,

9

4
π, . . . ,−qmin

]
,

qmin = −π

4
−
⌊

k − 1

2

⌋
2π, qmax = −π

4
+

⌊
k

2

⌋
2π.

The counterpart of (19) is

H ′
2k =

(
Rk 0
0 Sk

)
, (30)

12
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where

Rk =

⎛
⎜⎜⎜⎜⎜⎝

0 J1 0 . . . 0
J1 0 J2 . . . 0
0 J2 0 . . . 0
...

...
...

. . . Jk−1

0 0 0 Jk−1 (−1)kJk

⎞
⎟⎟⎟⎟⎟⎠ (31)

Sk =

⎛
⎜⎜⎜⎜⎜⎝

0 J1 0 . . . 0
J1 0 J2 . . . 0
0 J2 0 . . . 0
...

...
...

. . . Jk−1

0 0 0 Jk−1 (−1)k−1Jk

⎞
⎟⎟⎟⎟⎟⎠ . (32)

The eigenvalues of Pk and Qk in (29) are shifted +π/4 and −π/4, respectively relative
to the corresponding blocks of Hpst of even N, which makes the problem different from the
odd N case. Here we only give a calculation method. It can be verified that the eigenvalues of
Rk and Sk only differ in a minus sign, which accords with those of Pk and Qk, respectively.
Thus, we only need to deal with (31). Since the eigenvalues of Rk are the same as those of
Pk, we have

Det[Rk − λIk] = (−1)k
N∏

i=1

(λ − λi), (33)

Tr[Rk] = (−1)kJk = Tr[Pk], (34)

where λi’s are the eigenvalues of Pk in (29) (i.e. diagonal elements). The left-hand side of
(33) can be calculated using a recursion relation:

Det[Rk − λIk] = [−λ + (−1)kJk]Det[Rk−1 − λIk−1]|Jk−1=0

−J 2
k−1 Det[Rk−2 − λIk−2]|Jk−2=0.

Using (33) and (34), we can calculate Ji’s for any even N. Then the general formula, i.e. the
second part of equation (7) could be obtained by mathematical induction. For the second
solution of even N, the proof is very similar which is omitted here.

5. Conclusion

In this paper, we show that maximal entanglement generation of end qubits in the spin chain
of an XX model can be realized using a method of pre-engineered inter-qubit couplings. This
generation of maximal entanglement can be used to perform quantum cloning between the
end qubits. We compare this method with an alternative method based on state transfer
through swap operations using quantum gates or through pre-engineered coupling constants
for prefect state transfer in [13]. Our method is straightforward and the decrease of fidelity
due to imprecise operation time is considerably smaller than a clone-and-swap-scheme. The
method used in section IV is an example of inverse eigenvalue problems [30]. Moreover, the
state transfer through a spin chain with dissipation has been shown to be possible [31, 32],
thus allowing for quantum cloning through a spin chain under realistic dissipation. In the
cloning process, the qubits in the middle of a spin chain act as some form of a catalyst, i.e.
their state do not change at the end of the cloning process. This role as a catalyst needs further
investigation.
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